Can one say that if a speaker has a nominal impedance of 8 ohms, there should be a good speaker/tube-amp match? Is speaker efficiency a relevant factor? Any other good rules of thumb that might provide helpful guidance?Bifwynne, it's probably not possible to give a reasonably simple all-purpose answer to your question, because there are many variables involved. It is probably fair to say that a LOOSE correlation exists between higher nominal impedance + higher efficiency and suitability for use with a tube amp. However, a more telling factor is often the impedance vs. frequency curve of the speaker.
Keep in mind that an amp having low output impedance, such as most solid state amps, will supply current into a given load impedance that to a close approximation (and assuming the amp is operated within its limits) increases in direct proportion to a reduction in load impedance, while the voltage it outputs will be essentially unaffected by load impedance. Therefore if speaker impedance goes down at some frequencies, power delivery at those frequencies will increase (Power = Voltage x Current, oversimplifying slightly). An amp having high output impedance, such as most tube amps, will not behave that way, and it's power delivery will vary to a lesser degree as load impedance varies.
In general, the flatter the curve (i.e., the less variation of impedance with frequency), the more likely it is to be a good match for a tube amp. There are some exceptions to that, such as electrostatic speakers, which commonly have impedances that decline to very low values in the upper treble, and which are often much better matches to tube amps than to solid state amps. The low output impedance of a solid state amp would cause it to deliver more power into that lower impedance than a tube amp with higher output impedance would deliver, causing the upper treble to be over-emphasized with that kind of speaker.
At the other extreme, many dynamic speakers have low impedances in the bass region, and higher impedances in the mid-range and treble. That can sometimes be an indication that the speaker is intended for use with a solid state amp, where the designer is counting on increased power delivery into the low impedance to reinforce the bass.
I couldn't find an impedance curve for the Paradigm Signature S8 v2 which you indicated in another thread that you are using, but I'll assume it is similar to the curve for the earlier version of the speaker, shown near the bottom of this page.
As you'll see, the impedance curve is anything but flat. It ranges from about 3 ohms in a lot of the bass region, to a 21 ohm peak in the mid-range, and is in the general vicinity of 8 ohms in most of the treble region. That would indicate that in comparison to a solid state amp, a tube amp would de-emphasize the bass, emphasize the mid-range significantly, and provide some de-emphasis of the treble, but to a lesser degree than the bass.
Another thing to watch out for, in the plot of impedance phase angle, is highly capacitive phase angles (i.e., angles that are significantly less than 0, approaching say 40 degrees or so), that occur at frequencies where the impedance is low. The S8 has that combination in the area of 60Hz. That results in the amplifier having to supply relatively large amounts of current at that frequency. I suspect that would not be a problem for your VS115, but it might be for some less powerful tube amps.
Your VS115, btw, has a damping factor of 8, corresponding to an output impedance of 1 ohm on its 8 ohm tap. So the effects I have described would be smaller in degree than in the case of many other tube amps that have higher output impedances. A way of reducing those effects further, if you find it to be sonically preferable, would be to use the 4 ohm taps. That would provide an output impedance of 0.5 ohms, although maximum power capability would be reduced significantly.
Hope that helps,
-- Al