Ooooo . . . I've been summoned, like Notorious B.I.G.!
http://www.southparkstudios.com/clips/155324/the-ghost-of-biggie
Actually Al, you're correct save a small arithmetic error. A "pure voltage source" amplifier that clips at 100W into 8 ohms of course puts out a maximum of approximately 40 volts peak-to-peak before clipping, regardless of the input waveform or load impedance. So for the combination of two equal-amplitude sine waves at 4KC and 40C, that's 20V peak-to-peak for each before clipping, or 14.14VRMS each . . . corresponding to about 12.5 watts RMS at 16 ohms, and 25 watts RMS at 8 ohms, or each at 1/4 the rated power like you said. To some, these numbers might seem like a large amount of "loss", but this waveform into even a low-sensitivity domestic loudspeaker would be absolutely ear-splitting (and probably tweeter-frying in short order).
http://www.southparkstudios.com/clips/155324/the-ghost-of-biggie
Actually Al, you're correct save a small arithmetic error. A "pure voltage source" amplifier that clips at 100W into 8 ohms of course puts out a maximum of approximately 40 volts peak-to-peak before clipping, regardless of the input waveform or load impedance. So for the combination of two equal-amplitude sine waves at 4KC and 40C, that's 20V peak-to-peak for each before clipping, or 14.14VRMS each . . . corresponding to about 12.5 watts RMS at 16 ohms, and 25 watts RMS at 8 ohms, or each at 1/4 the rated power like you said. To some, these numbers might seem like a large amount of "loss", but this waveform into even a low-sensitivity domestic loudspeaker would be absolutely ear-splitting (and probably tweeter-frying in short order).