Bandwidth question?


I am interested in the qualitative difference in sound betw amplifiers that have -3db roll off at 100khz vs -3db at 300khz. Thru the amps I have tried, I suspect increased bandwidth has more openness and transparency and hence a better sense of space sharing. At the same time, it is easier to screw up the sound due to noise (from components/AC/RF) or improper cartridge loading. I am not very certain of the correlation and interested in what you guys think?

In reviewing the measurement sections of stereophile, many amps with -3db at 100khz demonstrate subtle rounding of the edges when reproducing 10khz square waves. I don't listen to square wave so I don't know what that translate into.

I realize that some amps (Spectral or Soulutions) has very high bandwidth (MegaHz) to implement negative feedabck. I am not refering to that.
128x128glai
I have a Sony ICF-2010 receiver which has a long wave band, from 150khz. and continuous coverage to 30mhz. this covers all the traditional SW bands and than some.
What I'm getting at is that if you have an amplifier with bandwidth to 100khz, you'll also need an antenna of suitable length. IOW, well over 6000 feet full wave for 150khz. much longer at lower frequencies. Submarines utilizing ULF for communications trail an antenna of some unknown but huge length. The transmitters antenna are huge arrays, visible from space.

I would suggest, however, that the bandwidth limit of 'd' amps is one of the subtle (or NOT?) problems people complain about.

Just by the numbers, I'd suggest a minimum of 2x upper human limit + a guard band....Maybe 44khz with rolloff above that of 3 or 6 db/octave. Now, I'm slippin' here, but where have I seen that number before? hmmmmmm.

Just thinkin' out loud.
Magfan,
That's true, but sensitivity of the amp does not end at -3dB point. Also antenna reception still exists at 1/10 of the wavelength. If we take, in your example, level drop of 20dB/decade it will be only -43dB at 10x10x150kHz=15MHz. Your full wave antenna is now 60ft offering reception up to 1/10 of the wavelength = 6ft.

Noise might be also capacitively coupled. At high frequencies any connector might become an input. Speaker output for instance is also an input of negative feedback. It has very low output impedance but only for low frequencies. Properly designed amplifier will have filters either RC and/or common mode chokes etc., but it only reduces noise pickup and not eliminates it completely. Some amplifiers (common to most of opamps) exhibit rectification phenomena where small amounts of very high frequency signal that is modulated (radio stations) converts to even smaller amount of audible signal because of uneven rise and fall times.

First obvious remedy is to avoid long cables if possible (where cable is still some antenna but skin effect does not provide shielding). Using shielded balanced ICs helps as well as power supply filter/conditioner, but it is better to avoid 500kHz amplifier because it is just asking for trouble. 44kHz seems a little low to me - I would settle for 100kHz. On the other hand newest Rowland 625 extends to 350kHz and Jeff Rowland is definitely a guy who knows.
I personally find that amps with a usable bandwidth out to 150 KHz hit a sweet spot for speed, clarity, and transparency without opening up the can of worms that ultra-wide bandwidth introduces nor the too-sweet, closed-in sound of amps that just make it out to 20KHz.

Amps linear to 150 KHz (and I'm simply relating my personal experience from preference--I've owned around 20 amps over the last 40 years) have a combination of body and warmth, plus transparency and clarity that I like. Although few of us hear *frequencies* beyond 20Khz, I suspect all of us can hear the difference that the wider bandwidth confers on square wave *rise time* in regard to clarity and transparency that accompanies a bandwidth of 150 KHz and beyond.

Amps with ultra-wide bandwidth have an unmistakably stunning clarity, but are sometimes accompanied by over-ring and treble brightness at the expense of warmth and body, both musical values. And sometimes an ultra-wide bandwidth design can run into an oscillation problem with the speaker interface. It's my understanding that this is why MIT designed a special network for their speaker cables to prevent oscillation in their collaborative audio show system with electronics from ultra-bandwidth Spectral and speakers by Hales.
For Your Information!

http://www.cco.caltech.edu/~boyk/spectra/spectra.htm

High frequencies above 20Khz matter!

So what is your concern? Do you feel like you are missing something in the high end? Air, space around instruments? Not always the amplifiers fault. A super tweeter might resolve issues.

There is a good article on wide bandwidth here:

http://wilson-benesch.com/downloads/whitepapers/Wilson_Benesch_ACTC60_Loudspeaker_White_Paper.pdf