Tara Labs
Isolated Floating Shield™
This unique and proprietary shield design is central to the Isolated Shield Matrix®. Unlike conventional shields, which are connected to the cable at the load end, the Isolated Floating Shield floats at both ends. It is completely decoupled, both mechanically and electrically, from every component in the system, including the cables themselves.
This is an important distinction because it has a profound effect on lowering the amount of RF intermodulation that can be introduced into the system via the cables. TARA Labs' in-house testing shows that the best of conventional shield designs are not effective at preventing RF intermodulation. The Isolated Shield Matrix, with its floating shield, dramatically reduces RF intermodulation of the audio signal.
In a typical interconnect the shield may prevent a certain amount of RF from modulating the signal through the conductors. But the shield is not deflecting RF energy in the environment - it is actually being absorbed. That energy is then returned to the system through the chassis of the component because the shield is coupled to the connector at one or both ends. By floating the shield at both ends, the Isolated Floating Shield avoids this problem. Energy absorbed by the shield is then transferred directly to the Floating Ground Station
Isolated Floating Shield™
This unique and proprietary shield design is central to the Isolated Shield Matrix®. Unlike conventional shields, which are connected to the cable at the load end, the Isolated Floating Shield floats at both ends. It is completely decoupled, both mechanically and electrically, from every component in the system, including the cables themselves.
This is an important distinction because it has a profound effect on lowering the amount of RF intermodulation that can be introduced into the system via the cables. TARA Labs' in-house testing shows that the best of conventional shield designs are not effective at preventing RF intermodulation. The Isolated Shield Matrix, with its floating shield, dramatically reduces RF intermodulation of the audio signal.
In a typical interconnect the shield may prevent a certain amount of RF from modulating the signal through the conductors. But the shield is not deflecting RF energy in the environment - it is actually being absorbed. That energy is then returned to the system through the chassis of the component because the shield is coupled to the connector at one or both ends. By floating the shield at both ends, the Isolated Floating Shield avoids this problem. Energy absorbed by the shield is then transferred directly to the Floating Ground Station