Timetel, please read my earlier entries on this thread where I explain the formula for skating force. Skating force remains the same since it is based solely on the magnitude of friction and the offset angle of the tonearm. Same tonearm, same friction, same skating force, so anti-skate should remain the same.
Do 45 RPM records need higher anti-skate setting?
I was playing one of my 45's today and heard Distinct mistracking on one channel only. I increased the skating setting and it was much better. This was only near he beginning of the LP. The LP was a Cannoball Adderly record. Do 45's require higher anti skate setting or is just a peculiarity of this record. The vinyl system is an LP12, Arkiv B and Ekos II, which invariably tracks very well.
- ...
- 58 posts total
Here we go again: VTF cannot be different for each channel. Left wall and right wall are identical - how could they not be given that they are cut by a single cutter?! Each nudge, each bump, each movement of the inside groove wall is duplicated on the outside groove wall. This is the Westerex system. Horizontal movement is L + R channels. Vertical movement is L - R channel. 45 degree orientation of coils give the sum and difference results of L and R. |
Regards, Omsed: Let's clarify the difference between centrifugal and centripetal force. Centripetal force is ANY force that acts to prevent an object from moving away from the center of an orbit, see http://www.diffen.com/difference/Centrifugal_Force_vs_Centripetal_Force. Consider skating phenomena the consequence of two forces acting upon the TA. First, friction along the axis of the TA. This is relative to grove modulation or any stylus "drag" in an unmodulated groove, or even an un-grooved disc. Any TA (with under or overhang) will be subject to a second vector, this is tangent to the long axis of the TA, and, dependent on wether the stylus is under or overhung relative to the spindle, will exert a lateral force on the stylus. The TA will be inclined to move either away (underhung), or towards (overhang) the center of revolution. The groove constrains the TA movement and serves as a centripetal force. These actions are observable and repeatable, the same principles that guided Sir Isaac, who also gave definition to centripetal force. The question remains unanswered, would not a TA tend towards the center of an un-grooved disc more rapidly if spun at 45rpm rather than at 33.3rpm? Peace, |
Omsed, No one is talking about spinning a complete turntable, or that there is a centripetal force involved in the skating issue, or that the cartridge is spinning with the record. If you read all the posts here and elsewhere I think that is clear. The only reason for using the term at all is in attempting to try and clarify the difference between a force acting toward the centre in the context of an arm being spun or a body in orbit, and a force acting towards the centre in a tonearm in reaction to the friction in the groove. VTF is, of course, different on each groove face unless anti-skate is used. That's why the skating force is a problem. That is elementary. I don't get what you are saying re the groove faces being identical etc. We are not talking about record cutting, but playback. Regarding information storage, if I store the same information in a bigger space, that's all I have done. When I retrieve it, I get it back. The point about the bigger space is that I can store more information, otherwise what's the point? Perhaps I am wrong, not being a recording engineer, but I was under the impression that higher speed allowed higher levels, whether it be tape or vinyl. And if there is more information, of whatever kind, the cartridge has to do more work to retrieve it, hence the reference, albeit imprecise, to energy (I take your point about the irrelevance of the platter's kinetic energy). As you are having difficulty finding proper scientific papers, I've posted a link here. Look at Gilson and Alexandrovitch. John . |
Timeltel, As Omsed said Skating force remains the same since it is based solely on the magnitude of friction and the offset angle of the tonearm. Same tonearm, same friction, same skating force, so anti-skate should remain the same.However, if the friction force changes then so does the skating force, so it depends on whether the coefficient of friction remains constant, which is an assumption. For an ungrooved as opposed to grooved disc, I don't know. For what it's worth, my experience of records skating (mainly in days long gone by) is that I recall them skating at much the same speed whether 33, 45 or 78, judging by the pitch of the scratching sound... John . |
- 58 posts total