Speaking theoretically, the most predictable performance will be from two capacitors of the same manufacturer and series, and close in value - that is, the 6uF and the 7uF together. This is because their residual inductance and ESR will also be close as well . . . which will give improved characteristics (over a single 13uF capacitor) without the possibility of a secondary HF resonances as can happen when an electrolytic is bypassed with a high-Q film cap.
As far as tolerance goes, Al is correct for the worst-case scenario - two 10% tolerance components in parallel have a maximum deviation of 10%. But in reality the tolerance does indeed get better the more components are placed in parallel, the extent of how much is dependent on their probability density function: http://en.wikipedia.org/wiki/Probability_density_function
The "normal" or Gaussian function can be used to derive an approximate tolerance, but some manufacturers will actually have documentation that specifies this. Frequently the required testing and documentation for these sorts of things is what comprises the difference between mil-spec and standard components, and is what drives up the cost of the former.
As far as tolerance goes, Al is correct for the worst-case scenario - two 10% tolerance components in parallel have a maximum deviation of 10%. But in reality the tolerance does indeed get better the more components are placed in parallel, the extent of how much is dependent on their probability density function: http://en.wikipedia.org/wiki/Probability_density_function
The "normal" or Gaussian function can be used to derive an approximate tolerance, but some manufacturers will actually have documentation that specifies this. Frequently the required testing and documentation for these sorts of things is what comprises the difference between mil-spec and standard components, and is what drives up the cost of the former.