Which is more accurate: digital or vinyl?


More accurate, mind you, not better sounding. We've all agreed on that one already, right?

How about more precise?

Any metrics or quantitative facts to support your case is appreciated.
128x128mapman
Hello Al.

Thank you for your expert and thoughtful response. I find myself agreeing with your premises while disagreeing with your conclusions.

I agree with your aside concerning filtering, but, would you not agree that every capacitor introduces distortion? And that therefore we should be concerned with physical measurements rather than idealizations? I hope that this does not misrepresent your point.

I also agree that the spectral components are all above 20KHz. Would you not agree that this creates a very rich ultrasonic environment? And further, that this is mainly generated from harmonies in a fairly narrow 4 octave range, suggesting that the ultrasonics are also clustered? I note that different frequencies "beat" against each other; e.g. 33KHz and 34KHz signals beat to form their difference, or 1 KHz. Further, these beats will be related to the fundamentals in no simple respect, producing distortions which have not been characterized. If they were especially irritating, only a small audio component would be required to render digitally processed signals unpleasant. Which is what some of us observe.

Were it true that ultrasonic distortion was inaudible, SACD would be no improvement on CD, which is not observed. Therefore, I stand by the assertion that total distortion is what is important, until it is proved otherwise.

Having said that, I agree with your (implicit) point that another useful simulation would use linear interpolation between subsequent sample points. Then it would be an empirical question of which method better approximated the physical effects, and whether the ear responded as the approximation would lead us to expect. A Ph.D. dissertation there.

Your point about a periodic waveform of infinite duration is absolutely correct. I was restricting myself to waveforms which are physically possible. Since physical possibility precludes the use of the Shannon Sampling Theorem to justify reasoning, I stand by my assertion.

I also suspect that many will disagree with me, for whatever reason. I respect your reasons, but nevertheless must disagree.

Thank you for an enjoyable and enlightening discussion. Respectfully,

Terry
Hi Terry,
I agree with your aside concerning filtering, but, would you not agree that every capacitor introduces distortion? And that therefore we should be concerned with physical measurements rather than idealizations?
Absolutely. The various non-idealities of low pass filters, in both the recording and playback parts of the chain (anti-aliasing and reconstruction filters, respectively) are a major issue in digital audio.
I also agree that the spectral components are all above 20KHz. Would you not agree that this creates a very rich ultrasonic environment? And further, that this is mainly generated from harmonies in a fairly narrow 4 octave range, suggesting that the ultrasonics are also clustered? I note that different frequencies "beat" against each other; e.g. 33KHz and 34KHz signals beat to form their difference, or 1 KHz. Further, these beats will be related to the fundamentals in no simple respect, producing distortions which have not been characterized.
Agreed. In fact, arguably the most important reason for low pass filtering the d/a output is to eliminate (or at least greatly attenuate) beat frequencies that would otherwise arise as a result of non-linearities downstream in the system (and perhaps to some extent in our hearing mechanisms as well).
Were it true that ultrasonic distortion was inaudible, SACD would be no improvement on CD, which is not observed. Therefore, I stand by the assertion that total distortion is what is important, until it is proved otherwise.
As indicated in this Wikipedia writeup:
Because of the nature of sigma-delta converters, one cannot make a direct technical comparison between DSD and PCM. DSD's frequency response can be as high as 100 kHz, but frequencies that high compete with high levels of ultrasonic quantization noise.[36] With appropriate low-pass filtering, a frequency response of 50 kHz can be achieved along with a dynamic range of 120 dB.[2] This is about the same resolution as PCM audio with a bit depth of 20 bits and a sampling frequency of 96 kHz.
So although comparison between the parameters of the two formats is not straightforward or precise, it would seem clear that the performance of DSD is, at least potentially, superior to that of redbook cd in terms of dynamic range, and also in terms of providing greater margin relative to the Nyquist rate. That increased margin can be expected, at least potentially, to lessen the side-effects of anti-aliasing and reconstruction filters that may occur at audible frequencies, just as it can for hi rez PCM, relative to redbook PCM.

In summary, I think that our positions are similar in a lot of respects, but we agree to disagree on the need for a sample rate that approaches the one you have advocated. My thanks to you, also, for a stimulating and mutually respectful discussion.

Regards,
-- Al
Almarg and Terry9, thank you for a fabulous exchange; extremely informative and a model of civility. Very impressive.
This is a technical question, and it can be answered with an accurate oscilloscope. Simply compare the two wave forms on a double trace scope. I would wager "digital" because of the consistency of reproduction.
Orpheous10, brings up a good point.
In practice rather than in theroy, how much distortion is produced in typical vinyl rigs?