Hi Bryon,
Presumably the shielded cable is reducing the amount of rfi/emi that escapes from the cable and couples onto circuit points elsewhere in the system, most likely points that are "after" the reclocker circuitry. There are probably a number of ways in which that could occur, despite the shielding you have incorporated into the G68. One possibility would be that it couples onto the power wiring, and makes its way from there onto the grounds within the G68. Noisy grounds in the digital section could (and probably would) result in increased jitter. Noisy grounds in the analog circuitry would have unpredictable but conceivably significant consequences at audible frequencies, even if the noise itself is at rf frequencies (as a result of intermodulation, AM detection, or other effects that can cause rfi to affect audible frequencies).
That's my speculation, anyway.
Best,
-- Al
Presumably the shielded cable is reducing the amount of rfi/emi that escapes from the cable and couples onto circuit points elsewhere in the system, most likely points that are "after" the reclocker circuitry. There are probably a number of ways in which that could occur, despite the shielding you have incorporated into the G68. One possibility would be that it couples onto the power wiring, and makes its way from there onto the grounds within the G68. Noisy grounds in the digital section could (and probably would) result in increased jitter. Noisy grounds in the analog circuitry would have unpredictable but conceivably significant consequences at audible frequencies, even if the noise itself is at rf frequencies (as a result of intermodulation, AM detection, or other effects that can cause rfi to affect audible frequencies).
That's my speculation, anyway.
Best,
-- Al