Last_Lemming I'm hesitating if I should even start since Al can explain it much better and more coherent way. If he does follow his explanation.
In both cases, digital and analog, we're talking about modulation that creates new frequencies.
Two frequencies in presence of nonlinear element (nonlinear transistor, nonlinear motion of speaker's membrane) produce additional signals of frequencies that are sum and the difference of original two frequencies. You can think of it as noise since it wasn't in the music and amplifier or speaker manufactured it. Great amplifiers or speakers modulate very little but we also "learned to listen" and can detect smallest differences in clarity.
Time jitter of your transport digital signal when playing single frequency also creates two additional frequencies (sidebands), but this time they are spaced on both sides of original/root frequency by modulation frequency distance (frequency of time jitter). Al mentioned once, that this modulation frequency can be completely random at the moment (random noise affecting digital signal timing) and we call it uncorrelated or can be cause by particular frequency like noise from switching power supply - then it is correlated. Usually it is mix of both. When complex signal (music) contains a lot of frequencies there is a lot of byproducts - basically a hash proportional to amplitude of the music. When music stops hash stops. It is detectable only as a lack of clarity and as such affects pretty much everything from tonality to imaging. Jitter usually has very small amplitude and byproducts (sidebands) are very, very small but still audible since they are not harmonically related to root frequency (like in harmonic distortion) and our ears are sensitive to it.
We're dealing wit two aspects of jitter: amplitude (modulation index) and the frequency. Small modulation frequency (like 60Hz) creates sidebands near root frequency that are easily masked therefore is less dangerous but high frequencies of the jitter create byproduct far apart from the root frequency and very audible. Amplitude of the jitter affects amplitude of the byproduct up to the point where even more than two sidebands can be created. Bad CDP have often a few nanoseconds jitter amplitude while good transports perhaps one tenth of it. I shouldn't really attribute it to transport but rather to system (transport, cable, DAC, ambient noise, power noise etc.)
Al, did I miss something?
In both cases, digital and analog, we're talking about modulation that creates new frequencies.
Two frequencies in presence of nonlinear element (nonlinear transistor, nonlinear motion of speaker's membrane) produce additional signals of frequencies that are sum and the difference of original two frequencies. You can think of it as noise since it wasn't in the music and amplifier or speaker manufactured it. Great amplifiers or speakers modulate very little but we also "learned to listen" and can detect smallest differences in clarity.
Time jitter of your transport digital signal when playing single frequency also creates two additional frequencies (sidebands), but this time they are spaced on both sides of original/root frequency by modulation frequency distance (frequency of time jitter). Al mentioned once, that this modulation frequency can be completely random at the moment (random noise affecting digital signal timing) and we call it uncorrelated or can be cause by particular frequency like noise from switching power supply - then it is correlated. Usually it is mix of both. When complex signal (music) contains a lot of frequencies there is a lot of byproducts - basically a hash proportional to amplitude of the music. When music stops hash stops. It is detectable only as a lack of clarity and as such affects pretty much everything from tonality to imaging. Jitter usually has very small amplitude and byproducts (sidebands) are very, very small but still audible since they are not harmonically related to root frequency (like in harmonic distortion) and our ears are sensitive to it.
We're dealing wit two aspects of jitter: amplitude (modulation index) and the frequency. Small modulation frequency (like 60Hz) creates sidebands near root frequency that are easily masked therefore is less dangerous but high frequencies of the jitter create byproduct far apart from the root frequency and very audible. Amplitude of the jitter affects amplitude of the byproduct up to the point where even more than two sidebands can be created. Bad CDP have often a few nanoseconds jitter amplitude while good transports perhaps one tenth of it. I shouldn't really attribute it to transport but rather to system (transport, cable, DAC, ambient noise, power noise etc.)
Al, did I miss something?