Hi Dover, thanks for your clarifying comments!
Regarding the pressure compensation, it might help to use the analogy of a stiff power supply (air supply & reserve connected to manifold) with a few local supplies (local pressure zones around air capillary openings to the bearing) coupled with high series resistance (capillaries). As current (air flow) drops on one of the sub-supplies, the voltage (air pressure) rises - kind of a passive feedback!
Regarding the usually alluded inherent "stiffness" of mechanical bearings including unipivots, it's worth to consider the following thought:
No material is stiff, everything is more or less elastic. (With some unique properties subsummized in the poetic word "character", importantly damping, and including speed of transmission). Reduce pressure area, and elasticity increases. This affects resonance frequency inherent in any elasticity / mass combo. *Point* coupling as in a unipivot or a spike point, looked at on an "atomic level", is in no way making the coupling stiff, it's the opposite. The surfaces meet in kind of a balanced force & elasticity state, a bit like a jelly ball swimming in water, to put it to the extreme. You don't get steel more elastic than with a perfectly pointed unipivot interface. Then think "it" as an elongated point and you see something like a short subminiature "string" at the end of the point - quite elastic, like a very small piece of microscopic harpsichord string. "Flatter" points like balls have much less of this, and make stiffer bearings - that depend more on extremely complex polishing processes. Some arms use the tip of a roller pen, quite clever!
The whole "argument" (rather a mythical marketing image?) of the "mechanical diode" is moot. Point coupling shurely does "something" (as everything we do does) but shurely it is not "stiff coupling" or magic diode processes. It might eliminate eg. multi-point rattling by a multitude of low pressure indefinite points, eliminating noises of "buzzing paper on a comb"-effects, tingling in metal-to-metal sonority.
And... air bearings are at the total other end of the scale!
That's what Bruce tells us since a long time.
Regarding the pressure compensation, it might help to use the analogy of a stiff power supply (air supply & reserve connected to manifold) with a few local supplies (local pressure zones around air capillary openings to the bearing) coupled with high series resistance (capillaries). As current (air flow) drops on one of the sub-supplies, the voltage (air pressure) rises - kind of a passive feedback!
Regarding the usually alluded inherent "stiffness" of mechanical bearings including unipivots, it's worth to consider the following thought:
No material is stiff, everything is more or less elastic. (With some unique properties subsummized in the poetic word "character", importantly damping, and including speed of transmission). Reduce pressure area, and elasticity increases. This affects resonance frequency inherent in any elasticity / mass combo. *Point* coupling as in a unipivot or a spike point, looked at on an "atomic level", is in no way making the coupling stiff, it's the opposite. The surfaces meet in kind of a balanced force & elasticity state, a bit like a jelly ball swimming in water, to put it to the extreme. You don't get steel more elastic than with a perfectly pointed unipivot interface. Then think "it" as an elongated point and you see something like a short subminiature "string" at the end of the point - quite elastic, like a very small piece of microscopic harpsichord string. "Flatter" points like balls have much less of this, and make stiffer bearings - that depend more on extremely complex polishing processes. Some arms use the tip of a roller pen, quite clever!
The whole "argument" (rather a mythical marketing image?) of the "mechanical diode" is moot. Point coupling shurely does "something" (as everything we do does) but shurely it is not "stiff coupling" or magic diode processes. It might eliminate eg. multi-point rattling by a multitude of low pressure indefinite points, eliminating noises of "buzzing paper on a comb"-effects, tingling in metal-to-metal sonority.
And... air bearings are at the total other end of the scale!
That's what Bruce tells us since a long time.