Why are low impedance speakers harder to drive than high impedance speakers


I don't understand the electrical reason for this. I look at it from a mechanical point of view. If I have a spring that is of less resistance, and push it with my hand, it takes little effort, and I am not working hard to push it. When I have a stiffer spring (higher resistance)  I have to work harder to push it. This is inversely proportional when we are looking at amplifier/speaker values.

So, when I look at a speaker with an 8 ohm rating, it is easier to drive than a speaker with a 4 ohm load. This does not make sense to me, although I know it to be true. I have yet been able to have it explained to me that makes it clear.  Can someone explain this to me in a manner that does not require an EE degree?

Thanks

128x128crazyeddy
"Current production is a more useful indicator of amp "grunt" than rated wattage (or so I think)."

Nice job ghosthouse.


Best to you,
Dave
And, remember most of the amps power is going to the lower frequencies. So, if the impedance dips at low frequecies, your amp will have a hard time keeping up with the demands of the speaker.
Like the water in the hose instead of being restricted by a nozzle, is now having to provide the same pressure in a larger diameter hose.
HTH
Bob
Hi crazyeddy,
I can't explain the math to you, but the inverse proportionality that you spoke of has to do with the fact that impedance is the AC version of resistance. While it is also measured in ohms, it is not the same as DC resistance.
First, I wouldn’t say that 4 ohm speakers are **necessarily** harder to drive than 8 ohm speakers, as there are many other variables involved. Including the efficiencies of the speakers; how the magnitudes of their impedances (the number of ohms) vary over the frequency range; the phase angles of their impedances at various frequencies (which describe the degree to which the impedance becomes partially inductive or partially capacitive at various frequencies, rather than purely resistive); etc.

But yes, typically a speaker having a low nominal impedance such as 4 ohms will be more difficult to drive than one having a higher nominal impedance such as 8 ohms. Adding to what has already been said, perhaps a good way to envision that is to consider a pair of extreme examples.

On the one hand let’s say that all the amp is driving is the input impedance of another amplifier, as would be the case if the amp were only connected to the speaker-level input of a powered sub. It might then be seeing a load of perhaps 100,000 ohms, which would result in the sub responding to the voltage being put out by the amp in question at any instant of time, but per Ohm’s Law (thanks for bringing that into the discussion, Ghosthouse) drawing essentially negligible current from that amp. In that situation the amp in question would hardly know that it is connected to anything at all, and the power it would be putting out would be essentially zero. (Power into a resistive load equals voltage x current).  (In saying this, btw, I'm putting aside the fact that tube amps having output transformers should not be operated unloaded while processing a signal, that being a separate issue).

At the other extreme let’s apply a load of essentially zero ohms to the amp, by shorting its + and - output terminals directly together with a heavy gauge jumper. I think most will recognize that the amp would be incapable of putting any kind of reasonable signal into that near zero ohm load, because per Ohm’s Law creating a non-zero voltage across a zero ohm resistance requires infinite current. And as the amp attempts to do that the result is likely to be either that it goes into a self-protective shutdown, or a blown fuse, or damage.

Obviously a 4 ohm load comes closer to being a direct short than an 8 ohm load, and an 8 ohm load comes closer to being a negligible load than a 4 ohm load, so there you go!

One additional point: As Ralph/Atmasphere has stated here many times, for various reasons both solid state and tube amplifiers will exhibit measurably better distortion characteristics when driving 8 ohms than when driving 4 ohms.

Regards,
-- Al