What is the principal advantage of higher sampling rates, if it is not better temporal resolution?
Yes, as Shadorne indicated the principal advantage is that it dramatically relaxes the rolloff requirements for anti-aliasing filters (in the recording process) and reconstruction filters (in the playback process). Or it makes it possible to avoid the use of techniques that have been used to relax those requirements, which have their own tradeoffs (e.g., oversampling + noise shaping).
It should be kept in mind that not only will 44.1kHz sampling be unable to capture signal frequencies at or above 22.05kHz, but the a/d converter used in the recording process must not be exposed to those frequency components. Otherwise "aliasing" will occur, resulting in those ultrasonic frequencies appearing in the digital data as audible frequencies.
Therefore an a/d converter that doesn't use oversampling or other special techniques must be preceded by a low pass filter that is flat to 20kHz, but has rolled off to the point of inaudibility in about 1/10th of an octave, at 22.05kHz. That is an EXTREMELY sharp rolloff, and, besides being expensive to manufacture, that kind of filter can have the sonic effects Kijanki described above in his post of 6/27, and the effect described in my second post of 6/30.
In contrast, 96kHz sampling would make it possible to allow more than a full octave for the same rolloff to occur (at 48kHz rather than 22.05kHz).
Similar considerations apply to the playback process, with respect to the "reconstruction filter," which refers to a low pass filter used to eliminate the stepped character of the d/a converter device's output.
Best regards,
-- Al