16 ohm speakers: any amp sounds better with more resolution. speaker cables less critical.


First,
  
Thanks to anyone who responds with whatever answers/opinions/advice comes from this. I'm retired, covid bound, Donna is taking care of everything holiday related, too much time, always curious.
..................................

I happened across this in an old thread started by Ralph (atmasphere)

"Sixteen ohms, BTW is a very simple means for getting more resolution out of your system, as nearly every amplifier made sounds better on 16 ohms than it will on 4 or 8 ohms. Speaker cables become far less critical too."

My speakers are 16 ohms (Electrovoice horn tweeter, horn mid, 15" woofer, crossover, rheostats, from 1958).
Extremely efficient, I have more than enough power. Amp, now and in the past all had 16 ohm taps.
Of course I can hook them up to my Cayin's 8 ohm taps now and listen, but facts, opinions, advice, to learn is good.
...........................


Lots of Questions? 

1. why/how do 16 ohm speakers make amps sound better, with more resolution? 

2. why speaker cables less critical? perhaps this is why I/we don't hear cable differences in my system?
I'm using my homemade twisted pair of cat 5 now (8 individually insulated small diameter solid core).

3.  to get exterior bias control: use 8 ohm tap for my 16 ohm speakers? (get alternate amp 4/8 no 16 tap,)

lose advantage(s)? 'sounds better'; 'more resolution'; 'speaker cables less critical'? 

this says slightly more mids:

http://blog.hughes-and-kettner.com/ohm-cooking-101-understanding-amps-speakers-and-impedance/

I can fine tune my speakers via their two rheostats: 'presence' and 'brilliance', so not really an issue for me.

4. Importance of Bias Control

how important is Bias? (I don't care about heat, power output, or tube life, just as bias affects sound). Frankly, using vintage tube receiver Fisher 500C, 800C and Fisher Mono Blocks 80Z, I have never checked or adjusted bias. I just put the control in the center position when cleaning insides/controls.

I have always used 16 ohm taps of various vintage tube and SS amps and newer current tube Cayin A88T. (original version, the only one with 16 ohm taps). It's bias control is internal, versions with safer external bias do not have 16 ohm taps.

5. replace their two rheostats? ('presence' and 'brilliance': copper wire-wound on ceramic body, mid/neutral position).
I have them in neutral position now, l/r frequency response equal.   

do I need to keep rheostats 16 ohms? use 8 ohm rheostat with 16 ohm drivers?

sales sheet says 16 ohm, but data sheet shows range 1.0 to 5k ohms. 

https://www.mouser.com/datasheet/2/303/controls_rheostats-1228697.pdf

does that mean, the drivers will draw whatever they draw (varies thru frequency range anyway), doesn't matter as long as rheostat range starts 1.0 ohm, extends past say 100.0 ohms?

https://www.mouser.com/datasheet/2/303/controls_rheostats-1228697.pdf

...........................................


thanks, Elliott











elliottbnewcombjr
and used cable with plenty of conductor to do the job.
@atmasphere by plenty you mean AWG correct?
Yes. Bad editing.

@elliotnewcombjr  The level controls are there to allow you to adjust the speaker to your amplifier's voltage response. But to maintain the crossover point they should be the same value as the original.

@mijostyn If you're getting a new Sound Lab, Roger corrected for the issue to whicht @lewm was referring. So you shouldn't need to do any mods.
Dear @lewm : I can't understand why you and any one else speak of 16 ohm, 8 ohm or 4 ohm speakers when the speaker impedance is not flat , it changes over its frequency range.

The measurements made it by Stereophiles confirm it and it does not matters what the speaker manufacturer specs are.

We can't choose an amplifier ( tube or SS. ) founded by the manufacturer nominal impedance spec because this spec is away from reality and all those "" bla, bla, bla " in good shape opinions on lower or higher distortions and the like has no true value. Facts are the only reality.

Any kind of audio items measurements made it by Stereophile always are really enligthing and learning lessons for many of us, at least for me that I'm not an expert as other gentlemaNS HERE.

The OP  ask something on 16 ohm speakers when does not exist in the way he was and is thinking.

If we look these measurements of 3 way different amplifiers along the speakers measurements posted we can understand the whole subject  in a better way:

https://www.stereophile.com/content/ps-audio-stellar-m1200-monoblock-power-amplifier-measurements

https://www.stereophile.com/content/gryphon-essence-mono-power-amplifier-measurements

https://www.stereophile.com/content/balanced-audio-technology-vk-56se-power-amplifier-measurements


All those kind of measurements needs no words, are just facts. Self explained facts.

R.







I can't understand why you and any one else speak of 16 ohm, 8 ohm or 4 ohm speakers when the speaker impedance is not flat , it changes over its frequency range.
Simply put, a nominally 16 ohm rated speaker will be higher impedance than a nominally rated 4 ohm speaker.


It is true that no speaker has flat impedance, but the impedance variation is not so important as the overall. If the impedance is overall higher, the amp will be lower distortion. I suspect that this is one of the reasons the Sound Lab is so transparent, as in the bass region its 30 ohms. Any bass energy made by any amplifier will have less harmonic distortion simply because the amp will be lower distortion where the power is needed most. And for all that, the impedance of the speaker varies by about 9:1 from bass to 20KHz.
Dear Raul, Of course you are correct that no speaker has a flat impedance.  Yet it's common practice to refer to speaker impedance with a single value.  I am guilty of that as is almost everyone else in the audio world.  If it were of some importance to me personally in the course of evaluating a speaker for purchase, I would demand to see the full impedance curve over the entire frequency range.  As you know, an impedance dip in the bass or midrange can be much more consequential than a falling impedance at very high frequencies, for the interaction of any speaker with any amplifier.  I don't argue with any of the points you made about speaker impedance.  Also, all remarks about speaker impedance are subject to the choice of amplifier to drive that speaker, unless the speaker is just crazily variable in impedance across the audio frequency range, which will be challenging for any amplifier.

Ralph, The older Sound Labs sounded anything but "transparent" in the midrange, using your OTLs to drive the unmodified version of my 845PX. I remember listening to Frank Sinatra during the first week or two after I bought the 845PXs and thinking to myself, "Is that Frank Sinatra?" Yes, Dr West did respond to our findings and our fix by revising his circuit and substituting the old treble audio step-up transformer for a new one that works down to lower frequencies, at least an octave lower.  This allowed him to make changes in the crossover such that it sucks less power and provides for a higher impedance at midrange frequencies.  I am told it's a big improvement.  I continue to drive my own 845PXs using a treble transformer capable of full-range response that does not require any crossover components at all to differentiate the input to the bass vs treble transformers.  Now, getting back to the amplifier factor, it is quite likely that the old version of the 845PX could have been driven more satisfactorily at midrange frequencies using a typical SS amplifier, because of the lower output impedance exhibited by most SS designs, but then I wouldn't have the OTL-ness to which I am addicted. I was told that SL use SS amplifiers at their factory, which is probably why the problem went unnoticed for a while.