The problem with springs is if they deflect they must rebound. And they of course have their own resonances when they do. So they must be damped. Try driving a car without dampers. So the damping is very much more critical than the spring in its design. Which is why the dampers on your car cost 100x more than the springs. The problem with dampers is they often have their own resonances. Some springs are damped by having trapped air escaping through a hole. For anything other than the lowest of frequencies this is a disaster because the viscosity of the air is both the reason why any damping at all happens and the reason why you are left with another spring in the form of compressed/decompressed air in the damper. And guess what, that air spring has its own resonance... so most spring/damper combos left this long ago and moved to oil based, because oil doesn’t compress and doesn’t add yet another resonation to the system. But the problem with uncompressible liquids is that they are more viscous than gasses, meaning you need a reservoir, seals, etc and this all eats into your profit margin. The next problem with the spring/damper combo is what is the range of frequencies it can deal with. As an engineer you can probably do the maths. Car spring/dampers can cope with low frequency deflections well, but can not cope with high frequencies at all. This is why your car has pneumatic tyres as well, where the air is another spring and the rubber of the tyre has a damping effect. The different spring rate of air in tyres to the spring/damper on the axle is a problem and why the fussy have lower profile tyres - it minimises the air spring conflict of the tyre. And the smallest of vibrations (road texture) is handled in the rubber touching the road alone.
So the issue for audio is - what are the frequencies that are thought to be a problem? Where are they coming from? Are they in the range a spring can react to? If so, can that spring be damped so as to not make the problem worse? Is that damping adding new resonances and again making things worse?
The products marketed seem to me to have very low frequency spring rebound indeed, and have air damping which at higher frequencies will themselves become springs, not dampers. I can not see how at the high frequencies and low amplitude of audio-caused vibration they can have any effect - I think any effect is due to the mountings and fixings (like the bushes on car suspension, which are vitally importance for isolation because they deal with higher frequencies which no car spring/damper can deal with) and not the springs.
I’d like an engineer - mechanical - to tell us here i) whether there is a spring that is effective in the range of frequency and amplitude deflections thought to be relevant to audio through speakers, ii) how such a spring if it exists should be damped, iii) whether a spike or BluTac has solved the problem already!
So the issue for audio is - what are the frequencies that are thought to be a problem? Where are they coming from? Are they in the range a spring can react to? If so, can that spring be damped so as to not make the problem worse? Is that damping adding new resonances and again making things worse?
The products marketed seem to me to have very low frequency spring rebound indeed, and have air damping which at higher frequencies will themselves become springs, not dampers. I can not see how at the high frequencies and low amplitude of audio-caused vibration they can have any effect - I think any effect is due to the mountings and fixings (like the bushes on car suspension, which are vitally importance for isolation because they deal with higher frequencies which no car spring/damper can deal with) and not the springs.
I’d like an engineer - mechanical - to tell us here i) whether there is a spring that is effective in the range of frequency and amplitude deflections thought to be relevant to audio through speakers, ii) how such a spring if it exists should be damped, iii) whether a spike or BluTac has solved the problem already!