This article is clearer:
https://phys.org/news/2013-02-human-fourier-uncertainty-principle.html «(Phys.org)—For the first time, physicists have found that humans can discriminate a sound’s frequency (related to a note’s pitch) and timing (whether a note comes before or after another note) more than 10 times better than the limit imposed by the Fourier uncertainty principle. Not surprisingly, some of the subjects with the best listening precision were musicians, but even non-musicians could exceed the uncertainty limit. The results rule out the majority of auditory processing brain algorithms that have been proposed, since only a few models can match this impressive human performance.
The researchers, Jacob Oppenheim and Marcelo Magnasco at Rockefeller University in New York, have published their study on the first direct test of the Fourier uncertainty principle in human hearing in a recent issue of Physical Review Letters.
The Fourier uncertainty principle states that a time-frequency tradeoff exists for sound signals, so that the shorter the duration of a sound, the larger the spread of different types of frequencies is required to represent the sound. Conversely, sounds with tight clusters of frequencies must have longer durations. The uncertainty principle limits the precision of the simultaneous measurement of the duration and frequency of a sound.
To investigate human hearing in this context, the researchers turned to psychophysics, an area of study that uses various techniques to reveal how physical stimuli affect human sensation. Using physics, these techniques can establish tight bounds on the performance of the senses.....
The results have implications for how we understand the way that the brain processes sound, a question that has interested scientists for a long time. In the early 1970s, scientists found hints that human hearing could violate the uncertainty principle, but the scientific understanding and technical capabilities were not advanced enough to enable a thorough investigation. As a result, most of today’s sound analysis models are based on old theories that may now be revisited in order to capture the precision of human hearing.
"In seminars, I like demonstrating how much information is conveyed in sound by playing the sound from the scene in Casablanca where Ilsa pleads, "Play it once, Sam," Sam feigns ignorance, Ilsa insists," Magnasco said. "You can recognize the text being spoken, but you can also recognize the volume of the utterance, the emotional stance of both speakers, the identity of the speakers including the speaker’s accent (Ingrid’s faint Swedish, though her character is Norwegian, which I am told Norwegians can distinguish; Sam’s AAVE [African American Vernacular English]), the distance to the speaker (Ilsa whispers but she’s closer, Sam loudly feigns ignorance but he’s in the back), the position of the speaker (in your house you know when someone’s calling you from another room, in which room they are!), the orientation of the speaker (looking at you or away from you), an impression of the room (large, small, carpeted).
"The issue is that many fields, both basic and commercial, in sound analysis try to reconstruct only one of these, and for that they may use crude models of early hearing that transmit enough information for their purposes. But the problem is that when your analysis is a pipeline, whatever information is lost on a given stage can never be recovered later. So if you try to do very fancy analysis of, let’s say, vocal inflections of a lyric soprano, you just cannot do it with cruder models."
By ruling out many of the simpler models of auditory processing, the new results may help guide researchers to identify the true mechanism that underlies human auditory hyperacuity. Understanding this mechanism could have wide-ranging applications in areas such as speech recognition; sound analysis and processing; and radar, sonar, and radio astronomy.
"You could use fancier methods in radar or sonar to try to analyze details beyond uncertainty, since you control the pinging waveform; in fact, bats do," Magnasco said.
Building on the current results, the researchers are now investigating how human hearing is more finely tuned toward natural sounds, and also studying the temporal factor in hearing.
"Such increases in performance cannot occur in general without some assumptions," Magnasco said. "For instance, if you’re testing accuracy vs. resolution, you need to assume all signals are well separated. We have indications that the hearing system is highly attuned to the sounds you actually hear in nature, as opposed to abstract time-series; this comes under the rubric of ’ecological theories of perception’ in which you try to understand the space of natural objects being analyzed in an ecologically relevant setting, and has been hugely successful in vision. Many sounds in nature are produced by an abrupt transfer of energy followed by slow, damped decay, and hence have broken time-reversal symmetry. We just tested that subjects do much better in discriminating timing and frequency in the forward version than in the time-reversed version (manuscript submitted). Therefore the nervous system uses specific information on the physics of sound production to extract information from the sensory stream.»
Magnasco is not a "crook" like you alleged for Essien, Magnasco is peer rewiewed and his work go in the SAME direction than Essien...
dletch2 this remark of Magnasco goes hand in hand with the experiments of Essien and give the same direction of research than Essien for another reason, the Gabor limit violation by the ears/brain, instead, in the case of Essien, of the revisitation of the monochord experiment linked to the production and perception of pitch... i will repeat the words of Magnasco with uppercase for the important word:
« We have indications that the hearing system is highly attuned to the sounds you actually hear in nature, AS OPPOSED TO ABSTRACT TIME SERIES; this comes under the rubric of ’ecological theories of perception’ in which you try to understand the space of natural objects being analyzed in an ecologically relevant setting, and has been hugely successful in vision. Many sounds in nature are produced by an abrupt transfer of energy followed by slow, damped decay, and hence have broken time-reversal symmetry.»
Then retract your word about Essien at least....And admit that his doctorate thesis is not writtent by a "crook"....