What do we hear when we change the direction of a wire?


Douglas Self wrote a devastating article about audio anomalies back in 1988. With all the necessary knowledge and measuring tools, he did not detect any supposedly audible changes in the electrical signal. Self and his colleagues were sure that they had proved the absence of anomalies in audio, but over the past 30 years, audio anomalies have not disappeared anywhere, at the same time the authority of science in the field of audio has increasingly become questioned. It's hard to believe, but science still cannot clearly answer the question of what electricity is and what sound is! (see article by A.J.Essien).

For your information: to make sure that no potentially audible changes in the electrical signal occur when we apply any "audio magic" to our gear, no super equipment is needed. The smallest step-change in amplitude that can be detected by ear is about 0.3dB for a pure tone. In more realistic situations it is 0.5 to 1.0dB'". This is about a 10% change. (Harris J.D.). At medium volume, the voltage amplitude at the output of the amplifier is approximately 10 volts, which means that the smallest audible difference in sound will be noticeable when the output voltage changes to 1 volt. Such an error is impossible not to notice even using a conventional voltmeter, but Self and his colleagues performed much more accurate measurements, including ones made directly on the music signal using Baxandall subtraction technique - they found no error even at this highest level.

As a result, we are faced with an apparently unsolvable problem: those of us who do not hear the sound of wires, relying on the authority of scientists, claim that audio anomalies are BS. However, people who confidently perceive this component of sound are forced to make another, the only possible conclusion in this situation: the electrical and acoustic signals contain some additional signal(s) that are still unknown to science, and which we perceive with a certain sixth sense.

If there are no electrical changes in the signal, then there are no acoustic changes, respectively, hearing does not participate in the perception of anomalies. What other options can there be?

Regards.
anton_stepichev
they have the same checksum. This is an absolutely indisputable proof of their similarity no matter what you call these files and no matter how you created them.

I am assuming you mean identical rather than similar, but in any case a checksum does not prove 2 files are identical

2 files with different checksums are different, 2 files with identical checksums could be different

https://en.wikipedia.org/wiki/Hash_collision

It doesn’t matter what seems different to you, it only matters what the computer understands the same.
I think your understanding of what is "the same" and what is "different" is too simplistic.  You're showing off of your "computer skills" seems a little too obvious.


The smallest step-change in amplitude that can be detected by ear is about 0.3dB for a pure tone. In more realistic situations it is 0.5 to 1.0dB'". This is about a 10% change. (Harris J.D.)

if you start with a flawed premise you often end up with a flawed conclusion.


@herman
2 files with different checksums are different, 2 files with identical checksums could be different
https://en.wikipedia.org/wiki/Hash_collision


Thank you for the interesting information, I take off my hat! Yes, I have to admit that the checksum is not a proof of the similarity of the files, although the probability of the match is extremely low and this is definitely not our case.

In our case it is easy to exclude any possible mistake, it’s enough to open the files in the hex editor and compare their binary code. See the screenshot https://www.backtomusic.ru/wp-content/uploads/2021/07/hex-compare.png - the files are identical (there is an empty "Comparison results" window on the right).

This simple experiment can be carried out by anyone. I hope there are no more doubts about the identity of the files?
if you start with a flawed premise you often end up with a flawed conclusion.
That is certainly true.