A new way of adjusting anti skate!


I was looking at the Wallyskater, a $250 or so contraption used to set anti skate. https://www.wallyanalog.com/wallyskater  It is reputedly the most accurate way to set anti skate. Talking about fiddly. 

The appropriate figure is 9 to 11 percent of VTF. So if you are tracking at 2 grams you want 0.2 grams of anti skate.
My Charisma tracks at 2.4 grams so I should set the anti skate for 0.24 grams..................................Bright light!.
I readjusted the Syrinx PU3 to zero so that it was floating horizontally. I set up a digital VTF gauge on it's side at the edge of the platter so that the finger lift would be in the cross hairs, activated the anti skate and was easily able to adjust it to 0.24 grams. I started at 0.18 grams and just added a little more. Whatever you measure the anti skate from it has to be at the same radius as the stylus. If you do not have a finger lift at the right location you can tack a toothpick to the head shell and measure from that. As long as you have the whole affair balanced at zero you will be fine. Added cost $0.00 as long as you have a digital VTF gauge. 

I would not buy stock in Wallyskater.
128x128mijostyn

TL;DR after @millercarbon’s and @lewm’s first posts (both of them being excellent, and I agree with them).

Trigonometry aside, and one thing that is lost on most individuals is "what are you adjusting for?"

The obvious answer is distortion, but all too frequently (and very much like tracking force), being able to track the most challenging A-S track on your test record is not necessarily ideal.

Excess tracking force and anti-skate (even if within your cartridge manufacturer’s specs, as far as tracking force is concerned), will likely compromise the dynamic presentation.

That’s a big "no-no" in my book, and the more I do this stuff, the more my final tuning steps address dynamics.

Now, in no way does this mean that I like distortion (quite the contrary), but given the choice of very good distortion performance with outstanding dynamics, vs. outstanding distortion performance and mediocre dynamics, I’ll always choose the former.

You might say that in phrasing the above choice the way I did is a straw-man argument, but the fact is that dynamics fall off a cliff very quickly with either too much tracking force or too heavy a hand with anti-skate.

I make a big deal about this in the free setup report you can pull down from my website.

... Thom @ Galibier Design

The best way I've seen, as well as explained was by the the Soundsmith guy, forget his name. He just places the stylus in the dead wax or run out groove and observes the behavior or movement of the tonearm/stylus. Too quick, bad...nice and slow and smooth, just right...thats how I've been doing it.

Mijo, for the Nth time, stylus velocity is not a factor in determining the magnitude of the skating force.  Thus your statement, "listening for distortion and watching the cantilever displace as it hits the record are sort of arbitrary. To get a good cartridge to distort requires very high groove velocities that over estimate the AS force required.", contains an invalid suggestion that stylus velocity affects the skating force. Also, further up the thread you intimated that the coefficient of friction will vary across the surface of an LP.  No it won't. For any formulation of "vinyl" used to manufacture a typical LP and the diamond stylus, the coefficent of friction is a constant.  Otherwise, it would not be called "the coefficient of friction".

I apologize for the pedantry, but at least we can get the basic science right. Then we can disagree on everything else. Which is cool.

@lewm, you are using the WRONG definition of groove velocity. It is not the linear speed of the record by the stylus. It is the actual speed of the stylus in the groove which is a direct result of the degree of modulation. The higher the modulation the faster is the groove velocity. The higher the groove velocity the stronger will be the force Friction) pulling the stylus away from the pivot. GOT IT!

No. Not to mention the fact that the skating force pulls the stylus toward the spindle. I agree that groove tortuousity does affect the skating force but not because it affects the magnitude of the friction force. Because.... for the Nth +1 time, friction is not a function of velocity. You can’t bend the rules of the basic science to explain the observation; you have to find another cause that does fit the science.

I am not at all sure I am correct, but my best explanation is that in tracing the tortuous groove, the stylus is pulled along at a "speed" dependent upon the platter speed and the distance of the styus from the spindle. The ins and outs of the groove walls however cause rapid instantaneous changes in stylus velocity, in order for it to negotiate the groove. Each instantaneous change, because it forces a change in velocity at the stylus tip, is an "acceleration". Acceleration is defined as a change in velocity, up or down. So now you have a mass (the moving mass of the cartridge) that is constantly accelerating. This would create or rather require the stylus to endure tiny forces according to Newton’s First Law of Motion (F = ma). It is those tiny Newtonian forces, which have a vector direction in the general direction of the friction force, that add to the net skating force.

I just thought of another possibility: The tortuosity of the groove causes the stylus to mistrack.  Even when we don't hear it, there is mistracking to one degree or another.  During a mistracking event, by definition the stylus loses or nearly loses contact with the vinyl, or the stylus may be driven against the vinyl.  Either type of event would have a minute and transient effect on the instantaneous VTF, the force normal to the groove.  That could indeed increase and decrease friction for fractions of a second. That could cause the ups and downs of the skating force, but not because of "velocity" or "speed" or whatever you want to name it.  Mistracking can occur in the outer grooves, where velocity or speed is maximal or during the inner grooves, where velocity or speed is minimal, and is probably worse at the inner grooves.