A new way of adjusting anti skate!


I was looking at the Wallyskater, a $250 or so contraption used to set anti skate. https://www.wallyanalog.com/wallyskater  It is reputedly the most accurate way to set anti skate. Talking about fiddly. 

The appropriate figure is 9 to 11 percent of VTF. So if you are tracking at 2 grams you want 0.2 grams of anti skate.
My Charisma tracks at 2.4 grams so I should set the anti skate for 0.24 grams..................................Bright light!.
I readjusted the Syrinx PU3 to zero so that it was floating horizontally. I set up a digital VTF gauge on it's side at the edge of the platter so that the finger lift would be in the cross hairs, activated the anti skate and was easily able to adjust it to 0.24 grams. I started at 0.18 grams and just added a little more. Whatever you measure the anti skate from it has to be at the same radius as the stylus. If you do not have a finger lift at the right location you can tack a toothpick to the head shell and measure from that. As long as you have the whole affair balanced at zero you will be fine. Added cost $0.00 as long as you have a digital VTF gauge. 

I would not buy stock in Wallyskater.
128x128mijostyn

 I don't use anti skate with carts which can reach 60 microns

tracking ability test. 

Perhaps you could save money by asking a retipper to turn the old stylus around so you can wear the other side out before you put a new one in.

 

@lewm ,  whether you like it or not lewm the skating force increases with groove modulation which is synonymous with groove velocity. I have explained it as best I can to get it through your stubborn countenance. Maybe AJ Conti can do a better job.   https://www.basisaudio.com/ajs-discussion-of-antiskate-forces/  You continually want to mistake groove velocity for linear speed. They are two very separate granted loosely related issues. There are only two coefficient of friction figures for any pair of materials, static and kinetic. The static coefficient of friction is related to the two materials in contact at rest which includes the "stiction" factor. The kinetic coefficient of friction is related to the two materials in motion which is the situation we are dealing with. The kinetic coefficient of friction does not change with linear velocity or what you would have playing a blank record, but it increases with increasing groove modulation which is synonymous with groove velocity. You object to the term groove velocity because it includes the word "velocity." When you see the term "groove velocity" just substitute groove modulation and I think you will be just fine. If not you can object until you are blue in the face but it won't get you anywhere except maybe a visit to the ER and I certainly do not want that so please do not stop breathing. We like having you around to argue with.    

@nandric , while the skating force might change a tiny bit with stylus profile, other than the prescribed VTF the cartridge has nothing to do with the skating force. 

Dear dover, it is called ''professional deformation''. I thought that we have
dispute and I am ''professional lawyer'' . If I lose nobody will hire me.