Jitter occurs all over the place. It is of no significance except at the real-time A/D process or the real-time D/A process, which is when the distortion takes place.
Drubin: The point that Serus and I are both making is that frequency accuracy means nothing regarding audio quality. It is used by some marketers of digital audio technologies to introduce new numbers with flying colors (they look really good on the ads). However, the point in Jitter is not whether the frequency is accurate, it is however the point whether the SAMPLES are accurate. And that's what I am trying to show in my example: samples can be way off and cause massive distortion at the D/A or A/D process but the frequency can be right on target. Frequency is a total amount of oscillations per unit time. Jitter is how much each sample is off time target each and every time. And with clocks, this can be 33 million times a second. So potentially, a clock can make 33 million little mistakes a second and still be accurate to a fraction of a second within years and years of running.
These two things must be differentiated. And it is important to understand that Bach sounds great, whether the music is tuned to A=440 Hz or A=440.2 Hz. Nobody, not even Bach himself, would ever notice the difference. But I think it's safe to say he wouldn't have liked Jitter.
Liudas
Drubin: The point that Serus and I are both making is that frequency accuracy means nothing regarding audio quality. It is used by some marketers of digital audio technologies to introduce new numbers with flying colors (they look really good on the ads). However, the point in Jitter is not whether the frequency is accurate, it is however the point whether the SAMPLES are accurate. And that's what I am trying to show in my example: samples can be way off and cause massive distortion at the D/A or A/D process but the frequency can be right on target. Frequency is a total amount of oscillations per unit time. Jitter is how much each sample is off time target each and every time. And with clocks, this can be 33 million times a second. So potentially, a clock can make 33 million little mistakes a second and still be accurate to a fraction of a second within years and years of running.
These two things must be differentiated. And it is important to understand that Bach sounds great, whether the music is tuned to A=440 Hz or A=440.2 Hz. Nobody, not even Bach himself, would ever notice the difference. But I think it's safe to say he wouldn't have liked Jitter.
Liudas