A Few Turntable Measurements using the RPM Android App


I found this Android phone app for TT rotation. Phone is Pixel 4a. Thought I'd try this app out. I'm skeptical of these phone apps. Accuracy is always an issue.

I have four tables. I took 5 readings for the first table in order to see what the repeatability is. The "absolute" RPM, RPM peak to peak, and 2 sigma  range readings were very, very repeatable. Consequtive RPM readings differed by a max of  0.01 RPM. Two sigma varied by 0.01% ( 2 sigma means that 86% of the readings were within the stated value). I personally would use 3 sigma, but that's a personal quibble.

I've measured all four of my tables. I am very certain that the results are very repeatable. I measured with no LP, LP rotating,  LP on and Stylus engaged, and phone offset from center. RPM was the same for all cases, The 2 sigma showed a  0.01% rise (really small). The reading at the edge of the LP was different. And scary to do!

Here's the results:

1. DD-40 #1, RPM = 33.32,  2 sigma = 0.07% (63 dB)

2. DD-40 #2, RPM = 33.27,  2 sigma = 0.09% (61 dB)

3. Acoustic Signature WOW XXL, RPM = 33.17,  2 sigma = 0.10% (60 dB). This varied 0.02% from reading to reading (after running the table for 10 minutes, this noise diminishes), but the 2 sigma stayed the same.

4. Denon DP-57L, RPM = 33.25,  2 sigma = 0.02% (74 dB).

 

I then went back to DD-40 #1. Using the RPM app, I set the mean speed to be 33.25. The strobe on the table was slowly moving! I checked against the strobe on the Cardas test LP and yes, the RPM speed accuracy was wrong. I reset TT speed using the strobe. The RPM app measured 33.23 again. I must conclude that although the RPM app is very repeatable, the absolute accuracy is not. The wow result (2 sigma variation) remains the same.

 

I measured the 45 RPM on DD-40 #1. RPM = 44.91, 2 sigma = 0.05%, so the 45 RPM is fairly accurate and the 2 sigma is lower.

 

This app makes no distinction between wow and flutter. It's all reported in the wow reading (wow and flutter are the same thing by nature, the only difference is the frequency range).

 

I'm surprised by the poor performance of the WOW XXL table. This a modern, belt driven table, with a massive platter. It is 5 years old. There's no way for the user to adjust the RPM. The variation in the speed is similar or slightly higher than the 40+ years old Micro Seiki DD-40 tables, which don't have crystal oscillator driven speed control. The WOW XXL takes about 10 minutes before the very high frequency variations settle. Now, I don't know much about the internal workings of the app. Helpful would be better accuracy (or the AC frequency in my house is not 60 Hz). Bandwidth is not reported.

The DP-57L performance is outstanding!. This TT was made in the 80s. And the DD-40 tables are not bad, but are as good as or better than the WOW XXL.

In summary, in my opinion, the RPM Android App is very useful. The absolute accuracy is a bit off, but the repeatability is very good The wow measurement is also quite good.

128x128Ag insider logo xs@2xkevemaher

@kevemaher  You said some belt drives need a long time to settle.  Is that because of the "rubber banding effect" of the belt stretching on start up?  

@ossicle2brain My Acoustic Sounds WOW XXL table is an excellent case. From a cold start, it needs a push on the platter rim to begin spinning.  One never knows when it is up to speed. There is no feedback. The REW app provides some idea. The app has a delay prior to beginning measurement. The WOW barely gets to speed before the measurement starts.

The motor used in the WOW has minimal torque, just the opposite to that of the Technics SL-1200  or the Denon DP-57L or DP-88.. I cannot think of a reason why AS decided to do this. I can't see an engineering reason.

There is a common rationale associated with the combination of a high mass platter with a low torque belt drive. The idea is that speed stability comes from rotational inertia, not motor torque. The Walker Proscenium, all Nottingham tables, and many tables of Germanic origin are examples of this approach.

What Lew said. Low torque motors transmit minimal vibration and noise to the platter (and all parts of the table) Some belt drives use tooth floss for example to further reduce transmission of motor artifacts while relying on inertial mass to keep the platter spinning accurately. 

I cannot think of a reason why AS decided to do this. I can’t see an engineering reason.