Thanks for qualifying your position, Dertonarm. I understand now that you are referring to a specific approach taken by Verdier. That approach as you have outlined it does seem to be unique, but costly and hard to control from a manufacturer's point of view. As you documented there were other issues with this approach, so perhaps it wasn't all that to begin with. Seemed to be a good idea.
The eddy current breaking is a solid, proven approach. The problem is that it still seems to be beyond the financial means of most of us, so we are left with belts or idlers. To Chris's point, the non-compliant mylar belts and lower torque motors do sound very good. This type of belt along with a decent control mechanism can provide speed stability that is better than most belt drives and I believe it is very close to your average idler. I suspect this is because we are starting with a no-cog DC motor and the mylar provides a much tighter coupling to the platter than any stretchy belt. But that is going off on a different topic.
If nothing else this discussion should show that the designer must take the entire drive chain into consideration, regardless of whether the bearing or motor is chosen first. They still have to work together to produce a speed stable platform.
The eddy current breaking is a solid, proven approach. The problem is that it still seems to be beyond the financial means of most of us, so we are left with belts or idlers. To Chris's point, the non-compliant mylar belts and lower torque motors do sound very good. This type of belt along with a decent control mechanism can provide speed stability that is better than most belt drives and I believe it is very close to your average idler. I suspect this is because we are starting with a no-cog DC motor and the mylar provides a much tighter coupling to the platter than any stretchy belt. But that is going off on a different topic.
If nothing else this discussion should show that the designer must take the entire drive chain into consideration, regardless of whether the bearing or motor is chosen first. They still have to work together to produce a speed stable platform.