Break in period


I have just acquired the Conrad Johnson CT5 preamp and CJ LP70S power amp. Would appreciate inputs /advice of fellow a'goners regd optimal break in period and is the break in period dependent on playback volume or amount of
gain. The reason I ask is coz a Stereophile review of the CT5(July 2006 ?)mentioned that the preamp was left in continous play mode for a week, that translates to 150 hrs.Given that i listen max 2hrs/day and more on weekends, that translates to a break in period of nearly 2 1/2 months !!
Have huge issues leaving the system running 24/7 coz of erratic power supply and neighbour's privacy etc
Would appreciate any/all advice
Cheers
128x128sunnyboy1956
Psychosomatic, huh? Or in other words. . . delusional, eh? And I thought that in 50 years of music I had reached a small modicum of insight. . . now I am really staggered by the harsh impact of factual reality!
Shadorne, are you saying IOW that you hear changes but you attribute them to yourself rather than the gear?
Has anybody measured new components with, say a spectrum analyzer or similar device(s), and measured it again after break-in and published the results? If the results are audible, shouldn't they also be measurable (all other things being equal - easier said than done, of course)? Jeff
Jeff sez
If the results are audible, shouldn't they also be measurable
Should be, I guess. BUT what would one measure? Once measured a diy phono equaliser with a friend (for other purposes) at ~2month intervals with a scope. Zilch.

Note however, that the caps had already been "treated" with a variac before they were mounted. Likewise with critical path resistors (components are important for the equalisation curve). Also, first measurement was well after first power up (a couple of hours or so).
Measuring break-in is not necessarily going to be very straightforward. You have to know what to look for. The basics don't change much. A lot of the obvious parameters measure the same before/after. That doesn't mean something hasn't changed. As Atmasphere mentioned, the best way to judge is by using your ears. It is quite apparent the change in many components.

The question is, what to look for? Let's take cables as an example. There is more than just RLGC parameters. Maybe the dissipation factor of the dielectric changes. Perhaps there is some contamination, impurity, or flaw in the refining or construction. I would look for the little things, like photoelectric, pyroelectric, thermocouple, electro-chemical processes, parasitic diode structures, etc. Copper-oxide is a semiconductor. It makes for a lousy diode. Dissimilar metals, junctions, crimps, solders, the list goes on. Could there be parasitic batteries embedded in a cable?

Note also, when a component undergoes manufacturing, it experiences many traumatic and often life changing events. Materials get melted, alloyed, refined, drawn, hammered, cast, extruded, gassed, separated, cooled, well you get the idea. Where exactly does the manufacturing process end? When the item has left the factory? Or when it has been conditioned and formatted for the application?

Examples? How about a battery? At least with NiMH and NiCd, you have to format them with an initial charge of 20+ hours. Really trickle it. If cut short, the result was a battery that would from then on hold much less charge. We did this test at Nokia, and a fully formed battery ended up with double the capacity. How about shoes? Don't they take a little time to break in? How about a violin? If a Stradivarius isn't played it loses its tone.

It might take more than a spectrum analyzer. But the answers are out there.

jh