Why do amps sound different?


Hi folks, can anyone tell me why amps sound different? I know this is a very trivial question, but it isn't so trivial as I previously thought. For example: an amp can sound "warm", while the other can sound "lean" and a bit "cooler". These amps measure the same on the test bench, but why do they sound different? What causes the "warm" characteristic if the amp has pretty good measurements and frequency characteristics? It is certainly not measurable high frequency roll off, otherwise the amp sucks. Maybe one of the experts among us can elucidate this issue a bit. Thank you.

Chris
dazzdax
While I enjoy and value Atmasphere's posts on the subject, I will take issue with the major point in the paper he presented. I don't see that these two paradigms exist at all . . . except in a hypothetical world where there is a simple, binary choice in available loudspeakers: Apogees and Lowthers.

If you look at the symbiotic evolution of amplifier and speaker designs over the past eighty years or so, it's commonly accepted that an increasing abundance of amplifier power enabled loudspeaker designers to trade efficiency for other factors, such as smaller cabinet size and improved linearity. But it has been the loudspeaker designers that have, in turn, been consistently demanding more "current impervious" performance from the amplifiers. This is why the hallowed amplifier designs of the pre-war era were triode designs: yes, for linearity, but just as importantly, for lower output impedance. Even an Altec VOT system and an Altec 604 duplex monitor would have presented very different impedance curves to the amplifier. And in either case, a flat frequency response from a linear amplifier was highly desired.

Even seventy years ago, loudspeaker designers were working with a voltage-source model, not a current-source model. While the reasons for it are my own speculation, they seem pretty obvious. First, high-frequency transducers almost always have a huge efficiency advantage over low-frequency ones. Second, advances in transducer technology are mostly advances in materials (diaphragm materials and suspensions, magnetic materials), and mathematical modeling (horns and lenses). Designing loudspeakers and crossovers to effectively take advantage of what the transducers have to offer is extraordinarily easier, and achieves better results, when working from a voltage-source model.

The presence/absence of multiple impedance taps on amplifiers, for this discussion, is a non-sequitur. If one wanted to design a conventional transformer-coupled tube amp that put out 50 watts into 16 ohms, 100 watts into 8 ohms, 200 watts into 4 ohms, etc. from a single output tap, it could be done . . . there would simply be huge tradeoffs in terms of efficiency and performance into a given impedance. Very similar tradeoffs also exist in solid-state amplifier design . . . the difference is one of cost and benefit. If you already have an output transformer, then adding additional taps usually makes sense. If you don't . . . then it's of course bit harder and costlier.

My point is that there really is no "Current Paradigm". The interface between high-fidelity amplifiers and their respective speaker systems have ALWAYS been based on a voltage model. (The term "high-fidelity" is meant to simplify the discussion by excluding things such as field-coil speakers and 70V distribution systems, not a snub to anybody's amplifier design.) And high-fidelity amplifiers have always been expected to have reasonably "current impervious" operation. What "reasonably" means in absolute terms is a debate that has been around many years longer than solid-state amplifiers . . . but if an amplifier's output is intended for a "4-ohm" load, then I would expect it to be fairly "current impervious" over the range of current that a "nominal 4-ohm" loudspeaker would require, plus some extra for good measure. Most good conventional tube amps achieve this.

I maintain that a high output impedance, for a high-fidelity audio power amplifier, is ALWAYS a liability, period. Now it may be that some of these amplifiers have other performance aspects that outweigh it, and some speakers are tolerant of it (and a few even subjectively improved). But this idea that there's one branch of the speaker-design profession that optimizes their products to work with amplifiers that have high output impedances? I don't buy it. If there is, then exactly what is the output impedance that they're expecting?
Kirkus, How did the loudspeaker designers gain enough leverage to make demands on amplifier designers?
Well, Cyclonicman, legend has it that James Lansing, immediately prior to his untimely death, wrapped a piece of Alnico V in a largish bath towel and "went postal" on the electronics staff at Altec . . .

But seriously, they did it by designing speakers that people wanted to buy, and that were more demanding loads for the amplifier. 40 years ago, virtually all amplifiers had 16-ohm output taps, and today, an amplifier's performance into a 16-ohm load isn't even a footnote. I guessing this is because, er, how many modern 16-ohm hi-fi speakers can you think of?

A great example is the Apogee full-range ribbons I alluded to. The two things that people remember about them are that they sounded amazing, and that they blew up amps. I have heard from a few sources about how these loudspeakers influenced Mark Levinson's amplifier designs . . . I'm not so sure that the timeline works out for that to be true, but the Apogees definately had a huge influence on the current output capability of "flagship" solid-state amps of the 1980s and 1990s.
Hi Kirkus, I'm not the one who has created these paradigms; they simply are what is. And for the record, you would be hard pressed to build a tube amp of the type you describe! Even if you ignore the taps of the output transformer, most tube amps will exhibit the constant power quality anyway. The taps are there to allow optimized loading on the tubes- its not the other way around.

You are correct in that the Voltage Paradigm was being developed about 60 years ago- during the 50s and 60s... **almost** 60 years ago. That bit of history probably needs to be in the paper so thanks for pointing that out. I don't like to think that the 1960s are that distant yet :)

FWIW the Apogees and Lowthers are both Power paradigm technology. If you want a better comparison, compare the B&W 802s (needs a 'voltage source' amplifier) to the Lowther (needs constant power).

Apogees are in the Power paradigm as their impedance curve has very little to do with resonance in a box and so does not exhibit the classic impedance curve of such a device. Being a nearly resistive load, zero feedback tube amps work great with them if they can deal with the impedance (some Apogees are a simple 4 ohm load, others as you know are quite a bit lower, but other than that they are easy to drive)- a set of ZEROs provide the access for that.

Paul Bolin (at the time with TAS) reviewed a set of zero feedback triode amplifiers (and gave them a Golden Ear Award) using the Apogees for his speakers. Prior to that another TAS reviewer ran his 1 ohm Apogee Full Ranges with a zero feedback triode amplifier (which made 100 watts) and gave good marks to it as well. I had the opportunity to hear that setup, and the 100 watts seemed to be plenty of power- they were at once very relaxed, detailed and with plenty of authority on the bottom end. A fabulous speaker!

I've tried to school myself as best I can about this subject, and I appreciate your input- the more this issue gets airtime I think the better for the art.

Hi Atmasphere . . . my main point is that hi-fi speaker designers simply do not consider an amplifier to be anything other than a voltage source, and that they never have. Further, it seems obvious to me that amplifiers have historically been intended to operate as voltage sources. And please believe that I'm not categorically critizing amplifiers that deviate from this practice, but I believe that a high output impedance, as an intentional, acceptable goal, is a completely modern phenomonon that is unrelated to what all but a very few speaker designs are anticipating.

The impedance at which an amplifier produces maximum power output, again, is completely non-sequitur. When I completed the restoration on the Marantz Model 2s currently in my system, I measured the output impedance at about 0.18 ohms from the 4-ohm taps - for all intents and purposes, a voltage source. This was the only tap I measured, but let's say that the 8-ohm taps have about 0.4 ohm output impedance. I would guess that my "4-ohm" Mezzo Utopias (typical reflex cabinet) would range from about 4-15 ohms. The modification of the speaker impedance on the voltage response of the amplifier would thus be about 0.3dB from the 4 ohm taps, and about 0.6dB from the 8-ohm taps . . . very little difference between the two. My point is that even if the load is mismatched and grossly affects the maximum power output, these 1950s-era amplifiers behave overwhelmingly as a voltage source, NOT a power source or a current source - if they're operating below clipping.

If I was to look for evidence that loudspeaker designers viewed an amplifier as a current source, here's what I would expect to find: Filter values and woofer conjugates in crossover networks that are calculated with the expectation of a high source impedance. Parallel resonant networks inside crossovers to dampen the impedance peak(s) from the cabinet/port. Standard models for calculating woofer responses from Thiele/Small parameters, that include a high source impedance. A specification from a speaker manufacturer that reads something like "recommended amp output impedance: 2-6 ohms". If I've been living under a rock, please tell me, but I've NEVER seen any of the above.

I chose the Apogee as an example of voltage-source thinking because I remember it being a very capacitive load, not simply low-impedance; maybe my memory fails me. But it doesn't surprise me that a capacitive speaker could sound nice from a high output impedance SET amp, for a couple of reasons. First, there's nothing like a high output impedance to keep an amplifier within its optimum current range . . . in the same way as a series resistor! Ditto for avoiding stability issues that many amps exhibit into capacitive loads. And third, I could easily see a capacitive load causing a resonant peak in the output transformer that might kinda offset the Ohm's-law HF rolloff. But again, I don't think the Apogee designers were anticipating these conditions.

Anyway, I find this interesting because there are so many "high-end" speakers out there that leave me scratching my head as to why they don't sound good to me at all, and I wonder if this is the way they're "supposed" to sound.