Hmm. So I used a pencil & fixed a plastic headed straight pin at each end. Let's call the "pivot" proximal, the other, the unconstrained end, "distal". Held the "pivot" pin and placed the other on a Boston Audio Mat2, the plastic pin heads depending from the beam. In a condition described as "overhang", the pencil "beam" was center seeking. As OH was diminished speed of travel also diminished. In a condition of "underhang", the end distal from the crude "pivot" came to rest further from the center of rotation, a state of "equilibrium" was observed. As "underhang" was increased, the distal end eventually ran entirely off the edge of the Mat2.
Running the "pivot" against a straight edge, it seemed to me that the beam remained parallel to its previous location and also seemed to maintain a 90* angle to the guiding straight edge. Movement at point "A" resulted in an equivalent movement at "B" in a most linear fashion.
It also appears these various movements occupied a smaller time-frame as speed of rotation was increased.
'Fraid I lack the background in Physics to prove these actions.
Peace,
Running the "pivot" against a straight edge, it seemed to me that the beam remained parallel to its previous location and also seemed to maintain a 90* angle to the guiding straight edge. Movement at point "A" resulted in an equivalent movement at "B" in a most linear fashion.
It also appears these various movements occupied a smaller time-frame as speed of rotation was increased.
'Fraid I lack the background in Physics to prove these actions.
Peace,