Thank you Kirkus for your cogent and thoughtful response. Hopefully, we will read more posts that address the very narrow issue about using NF to compensate for "varying impedance-vs-frequency characteristic[s]" of speakers.
You also said that "[i]f the amplifier's output impedance differs significantly from that which the speaker designer used for evaluation, then the response of the speaker will be different from what the designer intended."
I assume from a lay person's perspective, in plain English, that means if a speaker was voiced to be driven by a "Voltage Paradigm" amplifer (as described in Ralph Karsten's White Paper, a SS amp), then using a "Power Paradigm" amp (usually a tube amp) to drive the speakers may affect the sonic presentation. This assumes of course, that the tube amp has a relatively high putput impedance if little or no NF is used.
Therefore, the amount of acoustic deviation between the actual versus intended presentation presumably will be affected by how flat (or "tube friendly") the speaker's impedance curve is, and how much NF is being using to reduce the output impedance of the amp, be it SS or tube. I surmise that if a tube amp uses NF to reduce its output impedance, it will behave somewhat like a "Voltage Paradigm" amp. In other words, the acoustic deviation between what the designer intended and actual performance may be mitigated (i.e., reduced). Is this correct?
So Kirkus, the follow up to my Q was how do so called zero NF amps manage to compensated for changing speaker impedances?? Is the bottom line objective simply to reduce the amp's output impedance by whatever means is possible, i.e., through NF or otherwise?
I believe that Ayre SS amps do not use NF in the circuit design, yet have relatively high DFs, thus suggested low output impedances. I don't know how Ayre achieves these results without NF, but they do. Is that all that is needed, low output impedances and the amp will be a champ??
Thanks again.
BIF
You also said that "[i]f the amplifier's output impedance differs significantly from that which the speaker designer used for evaluation, then the response of the speaker will be different from what the designer intended."
I assume from a lay person's perspective, in plain English, that means if a speaker was voiced to be driven by a "Voltage Paradigm" amplifer (as described in Ralph Karsten's White Paper, a SS amp), then using a "Power Paradigm" amp (usually a tube amp) to drive the speakers may affect the sonic presentation. This assumes of course, that the tube amp has a relatively high putput impedance if little or no NF is used.
Therefore, the amount of acoustic deviation between the actual versus intended presentation presumably will be affected by how flat (or "tube friendly") the speaker's impedance curve is, and how much NF is being using to reduce the output impedance of the amp, be it SS or tube. I surmise that if a tube amp uses NF to reduce its output impedance, it will behave somewhat like a "Voltage Paradigm" amp. In other words, the acoustic deviation between what the designer intended and actual performance may be mitigated (i.e., reduced). Is this correct?
So Kirkus, the follow up to my Q was how do so called zero NF amps manage to compensated for changing speaker impedances?? Is the bottom line objective simply to reduce the amp's output impedance by whatever means is possible, i.e., through NF or otherwise?
I believe that Ayre SS amps do not use NF in the circuit design, yet have relatively high DFs, thus suggested low output impedances. I don't know how Ayre achieves these results without NF, but they do. Is that all that is needed, low output impedances and the amp will be a champ??
Thanks again.
BIF