I haven't taken the time to read the references you provided, but I believe I can shed some light on the discrepancy you cited. First,
Second, equation(*) is apparently based on the assumption that the output voltage of the cartridge is specified under conditions of negligible load, such as 47K. The equation then adjusts that spec to reflect the voltage that the cartridge would provide under the much heavier load conditions it sees when connected to 47K via the transformer.
I don't know whether output voltage specs for LOMC cartridges are typically based on load conditions that are essentially negligible (e.g., 47K), or under load conditions that are recommended for the particular cartridge, or on some other load condition. In general, though, it shouldn't make much difference, because in general the optimal load will be considerably higher than the cartridge's specified impedance.
In the given example the cartridge is being loaded at a value that is lower than its own output impedance. My understanding is that that is way too heavy a load to be optimal in most and perhaps nearly all cases. Therefore the step-up ratio of 35.4 is much too high. Reducing it to say 20 (26 db) would result in the cartridge seeing a load impedance of 117.5 ohms. That in turn would result in the cartridge's 0.3 mv specified output being increased to 6 mv if the Vout/Vcart correction is not taken into account, and 4.5 mv if the correction is applied (and if the 0.3 mv spec is based on conditions of negligible load). Which is not much of a difference either way. And I wouldn't be surprised if optimal loading for the 103 would often be found to be considerably higher than 117.5 ohms, which would narrow the gap between the two numbers even further (albeit at the expense of making phono stage noise performance more critical, due to the lower signal amplitude received by the phono stage as a result of the reduced turns ratio).
So as you can see, the application of equation(*) can be expected to make a significant difference only if the cartridge is being loaded excessively.
Regards,
-- Al
Vout: Voltage output at secondary side of trannyIn the given context "secondary" should be "primary." Vout is being used to refer to the voltage appearing across the primary side of the transformer when the cartridge is being loaded via the transformer. As you indicated, that voltage is then multiplied by the turns ratio to derive the voltage appearing at the input of the phono stage.
Second, equation(*) is apparently based on the assumption that the output voltage of the cartridge is specified under conditions of negligible load, such as 47K. The equation then adjusts that spec to reflect the voltage that the cartridge would provide under the much heavier load conditions it sees when connected to 47K via the transformer.
I don't know whether output voltage specs for LOMC cartridges are typically based on load conditions that are essentially negligible (e.g., 47K), or under load conditions that are recommended for the particular cartridge, or on some other load condition. In general, though, it shouldn't make much difference, because in general the optimal load will be considerably higher than the cartridge's specified impedance.
In the given example the cartridge is being loaded at a value that is lower than its own output impedance. My understanding is that that is way too heavy a load to be optimal in most and perhaps nearly all cases. Therefore the step-up ratio of 35.4 is much too high. Reducing it to say 20 (26 db) would result in the cartridge seeing a load impedance of 117.5 ohms. That in turn would result in the cartridge's 0.3 mv specified output being increased to 6 mv if the Vout/Vcart correction is not taken into account, and 4.5 mv if the correction is applied (and if the 0.3 mv spec is based on conditions of negligible load). Which is not much of a difference either way. And I wouldn't be surprised if optimal loading for the 103 would often be found to be considerably higher than 117.5 ohms, which would narrow the gap between the two numbers even further (albeit at the expense of making phono stage noise performance more critical, due to the lower signal amplitude received by the phono stage as a result of the reduced turns ratio).
So as you can see, the application of equation(*) can be expected to make a significant difference only if the cartridge is being loaded excessively.
Regards,
-- Al