why expensive streamers


@soix and others

I am unclear about the effect on sound of streamers (prior to getting to the dac). Audio (even hi-res) has so little information content relative to the mega and giga bit communication and processing speeds (bandwidth, BW) and cheap buffering supported by modern electronics that it seems that any relatively cheap piece of electronics would never lose an audio bit. 

Here is why. Because of the huge amount of BW relative to the BW needs of audio, you can send the same audio chunk 100 times and use a bit checking algorithm (they call this "check sum") to make sure just one of these sets is correct. With this approach you would be assured that the correct bits would be transfered. This high accuracy rate would mean perfect audio bit transfer. 

What am I missing? Why are people spending 1000's on streamers?

thx

 

128x128delmatae

@nigeltheflash I am sorry I am slow and thick. This is too abstract for me. And let's just focus on the "noise". 

Noise from where? The machine noise? Noise in the signal?

The signal comes from a server. Travels through a lot a steps, finally arrives to a streamer. Does the streamer add noise? Or it knows how to remove the noise?

And a good streamer sends "clear" signal to the DAC?

Sorry, feel free to ignore me. Just trying to understand. 

 

Theorizing why a streamer should or should net have a major effect on the sound quality is like theorizing on any other aspect… it may not make sense logically… until your jaw drops upon hearing a good one. I have heard at least a dozen in controlled circumstances and the difference is like between a VW bug and Porsche… night and day difference in performance. 

@grislybutter Slow and thick? I doubt it!

RFI noise accompanying but not part of the digital signal. It can arise anywhere along the playback chain and is why many people choose to incorporate an optical connection or a switch close to their streamer.

You say the signal comes from a server; sometimes it does, and sometimes it comes from a router. Both require a streamer to unpack the packets into a stream of 1s and 0s.

Some streamers simply pass the noise on. Some might add their own (do they have noisy circuitry? does this include LEDs?). Some might incorporate the sort of galvanic isolation we see in switches so actually mitigate the noise they receive and pass only some or none of it on.

So yes, a good streamer sends on to the DAC as close to the purely digital signal as it can. I’m not sure "clear" is the right word, as this might suggest that some streamers send more accurate 1s and 0s than others and it would be a truly terrible streamer which shuffled these!

The effectiveness of how various streamers handle/address noise is therefore a key factor in their performance.

The second thing a streamer does it to add a time signal to the bitstream it creates from the data packets/frames it receives, but this is a separate point.

Does this help?

Nigel

yes it sure does, thanks @nigeltheflash 

I hear a lot about timing, slow and fast, so I have to learn about the clocking part. I would have thought when analog is converted to digital and it becomes a stream, timing is encoded in the stream, the 0s and 1s. There is no layers of data, such as content and "pace" or whatever timing means, it's all one linear series. The DAC has to figure out how to unpack it.

@nigeltheflash

If noise wasn’t a thing and jitter wasn’t a thing, all streamers would sound the same. Unless I’ve missed something, and I’m sure someone will be along shortly to politely enlighten me if so...

As you wish . . .

@blisshifi eloquently summarized the analog electrical aspects of 1’s & 0’s in this post.

Synergistic Research has understood these aspects for a while - and has created products around it.

- - - -

Pre: streamer - during the ethernet packets/frame stage. My router & access point each have dedicated clocks.

A Synergistics Research digital power cord is delivering electricity to the LPS to my router. This SR cable accepts proprietary SR tuning modules. When different tuning modules are installed, the SQ changes.*

Everything else in the digital chain remains the same.

- - - -

Post: streamer - during the bitstream stage. My streamer & DDC each have clocks.

A Synergistics Research USB cable is delivering data between my streamer and my DDC. This SR cable accepts proprietary SR tuning modules. When different tuning modules are installed, the SQ changes.*

Everything else in the digital chain remains the same.

Also:

A Synergistics Research Galileo digital cable is delivering data between my DDC and my DAC. This SR cable accepts proprietary SR tuning modules. When different tuning modules are installed, the SQ changes.*

Everything else in the digital chain remains the same.

Also

A Synergistics Research digital power cord is delivering electricity to my DDC. This SR cable accepts proprietary SR tuning modules. When different tuning modules are installed, the SQ changes.*

Everything else in the digital chain remains the same.

- - - -

A streamer’s SQ can differ if manufacturers implement different electrical properties within the component chassis. In other words, inside the box. Synergistic did it outside the box. Innovators.

- - - -

* UEF Tuning Modules work outside the signal path to contour the sound of your cables by changing the way your cables resonate. By altering the relationship between signal and ground resonance you take control of the sonic balance of your cables and in the process, the overall sound of your system.

RED Tuning Module’s Sonic Characteristics:

  • Warmth
  • Liquidity
  • Musicality

BLUE Tuning Module’s Sonic Characteristics:

  • Refinement
  • Detail
  • Focus