You mentioned an spl rating of 76 dB's. At 70 dB's, this would allow you 6 dB's of headroom before you reached 1 watt of input. As mentioned though, i didn't know if you were measuring at 1 meter ( which is useless except for sake of comparisons to reviews ) or at the seated listening position. Given that most rock music only offers appr 5 - 6 dB's of dynamic range, you would be using 1 watt of power to produce the full dynamic range of such a recording based on the above information. This isn't to say that i was recommending such an installation or that it would work as well as theory dictates, i was just spouting off figures based on the math that "acoustic theoriticians" would tell us was sufficient. We all know better than that.
I was also wondering by what you meant by the statement that very few amps would drive them beyond 70 dB's??? Obviously, most any amp could generate 1 watt of electrical output relatively easily, so what's the fuss? As mentioned, the only thing i can see coming into play here is the low impedance / protection circuitry kicking in.
As to why the Class D amps work better, that has to do with the reduced duty cycle that the amp sees, the lack of sag in the power supply and lower levels of reflected EMF generated by the speaker. As you reduce the duty cycle of the amplifier, you also reduce the amount of drive applied to the speaker. Less drive equates to lower levels of reactance, which gives us less reflected power to deal with. This in turn allows the amp to load up more efficiently, which is just more icing on the cake. If the switching frequency is high enough, the power is delivered in very short and fast pulses, giving the power supply ample time to recover from the small amount of power drawn from during those bursts. If the switching frequency is too low, you can hear the "pulsing" of signal and it sounds fuzzy, choppy and lacks cohesiveness. A higher switching frequency limits the duration between pulses and the energy in the gaps is somewhat "filled in" by what is called "the flywheel effect". In English, the overshoot of energy initially applied keeps the forward or reverse momentum going until the next pulse is delivered. The potential for distortion with such a design is quite high, but with newer technology and MUCH higher switching rates, they are finding ways to get around this. Sean
>
I was also wondering by what you meant by the statement that very few amps would drive them beyond 70 dB's??? Obviously, most any amp could generate 1 watt of electrical output relatively easily, so what's the fuss? As mentioned, the only thing i can see coming into play here is the low impedance / protection circuitry kicking in.
As to why the Class D amps work better, that has to do with the reduced duty cycle that the amp sees, the lack of sag in the power supply and lower levels of reflected EMF generated by the speaker. As you reduce the duty cycle of the amplifier, you also reduce the amount of drive applied to the speaker. Less drive equates to lower levels of reactance, which gives us less reflected power to deal with. This in turn allows the amp to load up more efficiently, which is just more icing on the cake. If the switching frequency is high enough, the power is delivered in very short and fast pulses, giving the power supply ample time to recover from the small amount of power drawn from during those bursts. If the switching frequency is too low, you can hear the "pulsing" of signal and it sounds fuzzy, choppy and lacks cohesiveness. A higher switching frequency limits the duration between pulses and the energy in the gaps is somewhat "filled in" by what is called "the flywheel effect". In English, the overshoot of energy initially applied keeps the forward or reverse momentum going until the next pulse is delivered. The potential for distortion with such a design is quite high, but with newer technology and MUCH higher switching rates, they are finding ways to get around this. Sean
>